--- title: "Plotting options" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Plotting options} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE ) ``` ## Loading dataset and libraries ```{r setup} library(flexFitR) library(dplyr) library(kableExtra) library(ggpubr) library(purrr) data(dt_potato) head(dt_potato) |> kable() ``` ## Modeling ```{r} plots <- 2:7 mod <- dt_potato |> modeler( x = DAP, y = Canopy, grp = Plot, fn = "fn_logistic", parameters = c(L = 100, k = 4, t0 = 40), subset = plots ) ``` ## Plotting predictions and derivatives ```{r, fig.width= 8, fig.height=5, fig.alt="plot derivatives"} # Raw data with fitted curves plot(mod, type = 1, color = "blue", id = plots, title = "Fitted curves") ``` ```{r, fig.width= 8, fig.height=4, fig.alt="plot coef"} # Model coefficients plot(mod, type = 2, color = "blue", id = plots, label_size = 10) ``` ```{r} # Fitted curves only c <- plot(mod, type = 3, color = "blue", id = plots, title = "Fitted curves") ``` ```{r} # Fitted curves with confidence intervals d <- plot(mod, type = 4, n_points = 200, title = "Fitted curve (uid = 2)") ``` ```{r} # First derivative with confidence intervals e <- plot(mod, type = 5, n_points = 200, title = "1st Derivative (uid = 2)") ``` ```{r, fig.width= 10, fig.height=7, fig.alt="plot derivatives"} # Second derivative with confidence intervals f <- plot(mod, type = 6, n_points = 200, title = "2nd Derivative (uid = 2)") ggarrange(c, d, e, f) ```